
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348448880

ALGORITHMIC STRATEGIES IN INTELLIGENCE ANALYSIS

Article · March 2019

CITATIONS

0
READS

50

3 authors:

Some of the authors of this publication are also working on these related projects:

The Impacts of Artificial Intelligence and Nanotechnology on Human Computer Interaction View project

Imminent-Threats of Cloud Computing to Healthcare Operation View project

Gabriel Akibi Inyang

Cross River University of Technology

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Anthony O Otiko

Cross River University of Technology

10 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Prince Ana

Cross River University of Technology

20 PUBLICATIONS 23 CITATIONS

SEE PROFILE

All content following this page was uploaded by Prince Ana on 14 January 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348448880_ALGORITHMIC_STRATEGIES_IN_INTELLIGENCE_ANALYSIS?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348448880_ALGORITHMIC_STRATEGIES_IN_INTELLIGENCE_ANALYSIS?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Impacts-of-Artificial-Intelligence-and-Nanotechnology-on-Human-Computer-Interaction?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Imminent-Threats-of-Cloud-Computing-to-Healthcare-Operation?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Inyang3?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Inyang3?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cross-River-University-of-Technology?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel_Inyang3?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony-Otiko?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony-Otiko?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cross-River-University-of-Technology?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anthony-Otiko?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prince-Ana?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prince-Ana?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Cross-River-University-of-Technology?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prince-Ana?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prince-Ana?enrichId=rgreq-9d2224f546304a0e0e3688c5ccaf76bf-XXX&enrichSource=Y292ZXJQYWdlOzM0ODQ0ODg4MDtBUzo5Nzk4NTY5ODg4NTIyMjVAMTYxMDYyNzUxOTYxOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Science, Engineering and Technology, Vol. 6 (1), March 2019: pages 110-117

110

ALGORITHMIC STRATEGIES IN INTELLIGENCE ANALYSIS

1G. A. Inyang, 1A.O.Otiko, 1P.Ana

08134141082, 08033183236, 08036178995

gain140270@gmail.com, anaprince@yahoo.com, otikotony@gmail.com

1Department of Computer Science, Cross River University of Technology, Calabar, Nigeria.

ABSTRACT

Knowledge discovery from data is an inherently iterative process. That is, what is known about

the data greatly determines expectations, and therefore, what results would be found interesting

and/or surprising. Given new knowledge about the data, expectations will change. Intelligence

analysis is a process of collecting and generating intelligence from multiple sources such as

data and information. In order for intelligence analysis to be accurate, there must be a process

that ensures that the data produced is valid. In the physical and mathematical sciences, where

the standards of evidence and proof are less vulnerable to subjective judgments, something

much closer to a truly objective judgment results. This paper is to demonstrate how strategic

algorithms are in intelligence analysis. The consideration in this paper is on identifying classes

of algorithmic strategies relating to data structured process using an array of elements. The

algorithmic strategies in the search, insertion, deletion, and updating operations support the

iterative refinement of data exploration. This demonstrates how these methods guide on the

investigation on intelligence analysis on data structures. The results reveal superiorities of the

algorithmic strategies and lead to several design recommendation for creating data structures in

computing.

Keywords: Algorithmic Strategies; Intelligence Analysis; Array; Data; Data Structures

1.0 INTRODUCTION

Intelligence analysis today is faced with many

challenges, chief among them being the need to

fuse disparate streams of data, and rapidly

arrive at analytical decisions and quantitative

predictions for use by policy makers.

Modern communication forms such as social

media have increased the diversity of sources

available but have also created further

challenges, especially the need for algorithms

and software tools to suitably guide in

intelligence analysis and complement human

analytical skills. Although intelligence analysis

covers a wide range of specialties, such as

Security, Treasury, Energy, Transportation,

Commerce, Computing and Justice, one of the

veritable problems in intelligence analysis is:

given a collection of data to analyze, which

entities should one look at first? What activities

appear suspicious to warrant further

investigation and follow up, and, what

algorithmic strategy is to be applied?

This paper is to show how efficient algorithmic

strategies are in intelligence analysis. To

achieve this, we will examine and analyse the

different algorithmic operations in an array of

data. And also examine the algorithmic

complexity in an array of data.

In examining and analysing the different

algorithmic operations and examining the

algorithmic complexity in an array of data, the

divide and conquer approach will be

considered.

2.0 RELATED WORK

Modern software tools that support intelligence

analysis are motivated by different

considerations. Specific categories of these

systems include association rule mining based

systems (Buczak and Gifford, 2010.),

classification based tools e.g Skillicorn (2010),

model-guided software e.g., Koltuksuz and

Tekir (2006), collaborative systems e.g., Bier et

mailto:gain140270@gmail.com
mailto:anaprince@yahoo.com

Journal of Science, Engineering and Technology, Vol. 6 (1), March 2019

111

al (2010), and multi-agent systems e.g. Lindahl

et al (2007). The analysis process in a typical

intelligence analysis exercise can be viewed

through the framework (Card Pirolli and Card

2007), namely; information search and sense-

making. Intelligence analysis involves the

development of recommended predictions of

action, based on a wide range of available

sources of information, both open and

undercover. The analysis is developed in

response to the requirements of the

organization's or client's management to help

make decisions. (Sfetcu 2016)

Some analytic systems, such as, (Jigsa 2012),

NetLens (Kang 2007) focus on supporting the

information search loop. Other tools, such as

Analyst’s Notebook i2group (2011), and Entity

Workspace (Bier et al 2006) focus more on

sensemaking. The aspect of correctness of

intelligence analysis is dependent upon the

algorithmic tool or strategic tool used. This

paper is aimed at demonstrating the efficacy of

algorithmic strategies in the task of information

search and sensemaking processes in an array

of elements using the Divide and Conquer

method.

2.1 ALGORITHMIC STRATEGIES

Algorithmic analysis deals with the execution

or running time of various operations involved

in any sequence of data. The running time of an

operation can be defined as the number of

computer instructions executed per operation.

Based on the above, algorithm efficiency can be

analyzed in two different stages, before

implementation and after implementation.

These stages are as follows −

 A Priori Analysis: This is a theoretical

analysis of an algorithm. Efficiency of an

algorithm here is measured by assuming

that all other factors, for example,

processor speed, are constant and have no

effect on the implementation.

 A Posterior Analysis: This is an empirical

analysis of an algorithm. The selected

algorithm is implemented using

programming language. This is then

executed on target computer machine. In

this analysis, actual statistics like running

time and space required are collected.

2.2 ALGORITHM COMPLEXITY

Suppose X is an algorithm and n is the size of

input data, the time and space used by the

algorithm X are the two main factors, which

decide the efficiency of X.

i. Time Factor − Time is measured by

counting the number of key operations

such as searching, insertion, deletion,

updating and comparisons in the sorting

algorithm.

ii. Space Factor − Space is measured by

counting the maximum memory space

required by the algorithm.

The complexity of an algorithm f(n) gives the

running time and/or the storage space required

by the algorithm in terms of n as the size of

input data.

2.3 SPACE COMPLEXITY

Space complexity of an algorithm represents

the amount of memory space required by the

algorithm in its life cycle. The space required

by an algorithm is equal to the sum of the

following two components −

 A fixed part that is a space required to store

certain data and variables that are

independent of the size of the problem. For

example, simple variables and constants

used, program size, etc.

 A variable part is a space required by

variables, whose size depends on the size

of the problem. For example, dynamic

memory allocation, recursion, stack space,

etc.

Space complexity S(P) of any algorithm P is

S(P) = C + SP(I), where C is the fixed part and

S(I) is the variable part of the algorithm, which

depends on instance characteristic I. Retrieved

August 29, 2019,from

https://www.studytonight.com/data-

structures/space-complexity-of-algorithms.

2.4 TIME COMPLEXITY
Time complexity of an algorithm represents the

amount of time required by the algorithm to run

to completion. Time requirements can be

https://www.studytonight.com/data-structures/space-complexity-of-algorithms
https://www.studytonight.com/data-structures/space-complexity-of-algorithms

G. A. Inyang: Algorithmic Strategies in Intelligence Analysis

112

defined as a numerical function T(n), where

T(n) can be measured as the number of steps,

provided each step consumes constant time. For

example, insertion operation involving n-bit of

data takes n steps. Consequently, the total

computational time is T(n) = c ∗ n, where c is

the time taken for the insertion of the bits. Here,

it is observe that T(n) grows linearly as the

input size increases. Retrieved August 28,

2019, from

https://www.studytonight.com/data-

structures/time-complexity-of-algorithms.

Usually, the time required by an algorithm falls

under three types:

 Best Case − Minimum time required for

program execution.

 Average Case − Average time required for

program execution.

 Worst Case − Maximum time required for

program execution.

2.5 INTELLIGENCE ANALYSIS

Intelligence analysis is a process of collecting

and generating intelligence from multiple

sources such as data and information. The

process usually involves accumulating

information about a variety of circumstances

and individuals who have knowledge in areas

that include strategy, operations, or tactical

intelligence. According to the Central

Intelligence Agency, “Intelligence analysis is

the application of individual and collective

cognitive methods to weigh data and test

hypotheses within a secret socio-cultural

context.” Retrieved August 28, 2019, from

https://www.securitydegreehub.com/what-is-

intelligence-analysis/

2.5.1 WHY INTELLIGENCE ANALYSIS

In order for intelligence analysis to be accurate,

there must be a process that ensures the data

produced is valid. Accurate intelligence

analysis is important because it provides correct

judgment and decision making. Once the right

information is produce, the possibility of

making correct decision and conclusion remain

evident, and the result relays the capacity to

develop timely and well-formulated strategic

intelligence. Retrieved August 28, 2019, from

https://www.securitydegreehub.com/what-is-

intelligence-analysis/

2.5.2 THE PROCESS OF INTELLIGENCE

ANALYSIS

Intelligence analysis is successfully collected

through an intelligence process, and this

include.

 Requirements
Requirements involve defining questions that

identify what data or information is expected

to be gathered, and it can also mean a detailed

assembly of certain types of intelligence.

 Collection
When the requirements are established, the

process of collecting a variety of information

takes place. There are some requirements that

are specific and involve a number of different

forms of data, which is determined by how

each requirement should be met.

 Processing and Exploitation
After the collection step is completed, the

information must go through processing and

exploitation before it can be considered

intelligence information. Conversion is an

important part of this step and can include

translations, decryption, and interpretation.

 Analysis and Production
Analysis and production is a crucial step in

the intelligence analysis process. This step

includes the evaluation, integration, and

analysis of all the intelligence data, which

can consist of detailed reports as well as

single-source and all-source studies.

 Dissemination and Consumption
Dissemination is transferring information

from producers to consumers. Consumption

refers to how consumers interpret the

information.

 Feedback
Feedback is the dialog that takes place

between the intelligence producers and

consumers, which starts and continues after

the information is received. Retrieved August

29, 2019, from

https://www.securitydegreehub.com/what-is-

intelligence-analysis/

https://www.securitydegreehub.com/what-is-intelligence-analysis/
https://www.securitydegreehub.com/what-is-intelligence-analysis/
https://www.securitydegreehub.com/what-is-intelligence-analysis/
https://www.securitydegreehub.com/what-is-intelligence-analysis/
https://www.securitydegreehub.com/what-is-intelligence-analysis/
https://www.securitydegreehub.com/what-is-intelligence-analysis/

Journal of Science, Engineering and Technology, Vol. 6 (1), March 2019

113

3.0 METHODOLGY

Many algorithmic strategies are recursive in

nature. Solving a given problem requires

recursively dealing with sub-problems using

the minimum time and space.

In examining and analysing the different

algorithmic operations and examining the

algorithmic complexity in an array of data, the

divide and conquer approach will be

considered.

3.1 ARRAY

Arrays are classified as Homogeneous Data

Structures because they store elements of the

same type. They can store numbers, strings,

boolean values (true and false), characters,

objects, and so on. But once you define the type

of values that your array will store, all its

elements must be of that same type. It is not

possible to “mix” different types of data.

To understand how array work, it is very

helpful to visualize the computer memory as a

grid, just like the grid in figure 1 below. Each

piece of information is stored in one of the

small elements (squares) that make the grid.

 Figure 1: Grid

Arrays take advantage of grid structure to store

lists of related information in adjacent memory

locations to guarantee extreme efficiency for

finding those values. Their elements are next to

each other in memory. If there is a need to

access more than one of element, the process is

extremely optimized because the computer

already knows where the value is located.

READING VALUES IN AN ARRAY

The amazing power of arrays comes from their

efficiency to access values. When an array is

created, the following actions takes place;

i. Assignment of values to a variable.

ii. Define the type of elements that it will store.

iii. Define its size (the maximum number of

elements)

3.3 ARRAY REPRESENTATION
Array can be declared in various ways in

different languages. For illustration, array can

be declared as shown in figure 2 and 3 but

figure 4 is not an acceptable elements

representation in an array.

 myArray =

 Figure 2: Array representation

 0 1 2 3 4

 Figure 3: Array of elements

Not allowed!

o “a” “b” 5 true

 Figure 4: Array of mixed elements.

The name assigned to this variable is very

important because it will be use later in the code

to access values and to modify the array. But

how can this access be possible by the computer

for a particular value. This is where indices take

a vital role.

3.3.1 INDEX

An “index” (“indices” in plural) is use to access

a value in an array. This is a number that refers

to the location where the value is stored. As

shown in figure 5 below, the first element in the

array is referred to using index 0. Moving

further to the right, the index increases by one

for each space in memory.

G. A. Inyang: Algorithmic Strategies in Intelligence Analysis

114

 0 1 2 3 4

 Indices

Figure 5: Array showing indices

3.3.2 ELEMENTS

Elements in an array are values or variables, each identified by at least one array index or key.

Figure 6 shows the elements in the array. The array shown in figure 6 below is of length five (5)

which means it can store five (5) elements. Each element can be accessed via its index.

There are three ways in which the elements of an array can be indexed:

i. 0 (zero-based indexing): The first element of the array is indexed by subscript of 0.

ii. 1 (one-based indexing): The first element of the array is indexed by subscript of 1.

iii. n (n-based indexing): The base index of an array can be freely chosen. Usually programming

languages allowing n-based indexing also allow negative index values and other scalar data

types like enumerations, or characters may be used as an array index.

“a” “b” “c” “d” “e”

 0 1 2 3 4

myArray 0

 Figure 6: Array showing elements of alphabets

3.3.3 SYNTAX TO ACCESS AN

ELEMENT IN ARRAY

The general syntax to access an element is:

<ArrayVariable>[<index>]

Suppose an array is stored in the variable

myArray, to access the first element (at index

0), the syntax to use would be: myArray[0]

4.0 IMPLEMENTATION

To solve a problem, different approaches can

be followed. Some of them can be efficient

with respect to time consumption, whereas

other approaches may be memory efficient.

However, one has to keep in mind that both

time consumption and memory usage cannot be

optimized simultaneously. If an algorithm must

run in lesser time, more memory is required and

vice versa.

4.1 THE ALGORITHMS

The proposed algorithms are surveyed in terms

of these four operations:

 (1) Search Operation.

 (2) Deletion Operation.

 (3) Insertion Operation.

 (4) Update operation.

4.2 SEARCH OPERATION:

4.2.1 THE SEARCH ALGORITHM

It is the algorithmic process of finding a

particular item in a collection of items. The

search operation can be performed for an array

of element based on its value or its index. To

search an element in a given array, it can be

done in the following ways: Sequential Search

or Binary Search.

Consider A as an array with N elements and K

is an element such that K<=N. the following is

the algorithm to find an element with a value of

ITEM using sequential search.

 1. Start

 2. Set J = 0

 3. Repeat steps 4 and 5 while J < N

 4. IF A[J] is equal ITEM THEN

GOTO STEP 6

 5. Set J = J +1

 6. PRINT J, ITEM

 7. Stop

The algorithm when compiled and executed,

the following result is produced−

https://en.wikipedia.org/wiki/Zero-based_numbering
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Enumerated_type
https://en.wikipedia.org/wiki/Character_(computing)

Journal of Science, Engineering and Technology, Vol. 6 (1), March 2019

115

4.2.2. RESULT

The original array elements are:

A[0] = 1

A[1] = 3

A[2] = 5

A[3] = 7

A[4] = 8

Found element 5 at position 3

4.3. DELETION OPERATION

Deletion refers to removing an existing element

from the array and re-organizing all elements

of the array. In order to delete an element from

an array, first the element from specified

position must be eliminated and then shift

remaining elements upwards to take vacant

space of the deleted element.

4.3.1 DELETION ALGORITHM

Consider A as an array with N elements and K

is an element such that K<=N. the following is

the algorithm to delete an element available at

the Kth position of A.

1. Start

2. Set J = K

3. Repeat steps 4 and 5 while J < N

4. Set A[J] = A[J + 1]

5. Set J = J+1

6. Set N = N-1

7. Stop

The algorithm when compiled and executed, it

produces the following result −

4.3.2. RESULT

The original array elements are:

A[0] = 1

A[1] = 3

A[2] = 5

A[3] = 7

A[4] = 8

The array elements after deletion:

A[0] = 1

A[1] = 3

A[2] = 7

A[3] = 8

4.4. INSERTION OPERATION

Insert operation is to insert one or more data

elements into an array. Based on the

requirement, a new element can be added at the

beginning, end, or any given index of array.

Insertion operation can take place in the

following situations with an array−

 At the beginning of an array

 At the given index of an array

 After the given index of an array

 Before the given index of an array

4.4.1. INSERTION ALGORITHM

Let A be an Array (unordered) with N elements

and K is an element such that K<=N. The

following is the algorithm where ITEM is

inserted into the Kth position of A −

1. Start

2. Set J = N

3. Set N = N+1

4. Repeat steps 5 and 6 while J >= K

5. Set A[J+1] = A[J]

6. Set J = J-1

7. Set A[K] = ITEM

8. Stop

When compiled and execute the above

algorithm, it produces the following result −

4.4.2. RESULT

The original array elements are:

A[0] = 1

A[1] = 3

A[2] = 5

A[3] = 7

A[4] = 8

The array elements after insertion:

A[0] = 1

A[1] = 3

A[2] = 5

A[3] = 10

A[4] = 7

A[5] = 8

4.5. UPDATE OPERATION

Update operation refers to updating an existing

element from the array at a given index.

4.5.1. UPDATE ALGORITHM

Consider A as an array with N elements and K

is an element such that K<=N. The following

is the algorithm to update an element available

at the Kth position of A.

G. A. Inyang: Algorithmic Strategies in Intelligence Analysis

116

1. Start

2. Set A[K-1] = ITEM

3. Stop

The algorithm above when compiled and

executed, produces the following result –

4.5.2. RESULT

The original array elements are:

A[0] = 1

A[1] = 3

A[2] = 5

A[3] = 7

A[4] = 8

The array elements after updating:

A[0] = 1

A[1] = 3

A[2] = 10

A[3] = 7

A[4] = 8

4.6. DISCUSION OF RESULT

Arrays are extremely powerful data structures

that store elements of the same type. The type

of elements and the size of the array are fixed

and defined when created.

Once an array is created, memory is allocated

immediately for elements to be located so that

they can be accessed very efficiently using

indices.

The experimental results on five intelligence

analysis datasets indicate that all of the

algorithmic strategies presented in this paper

have the ability to generate some meaningful

results for intelligence analysis.

i. The Search Algorithm:

The search algorithm seeks to find a particular

element in a collection of items. The search

operation is performed for the array of five

elements based on index. After the execution of

the algorithm, the search of element is done in

a sequential order where element 5 in is found

in index 3.

ii. The Deletion Algorithm:

The algorithm is to delete an element available

at the Kth position of the array.(1,3,5,7,8) The

result shows that the third element (5) after

executing the deletion algorithm was deleted

producing an array of four elements (1,3,7,8).

iii. The Insertion Algorithm

In this algorithm, the array of five elements

(1,3,5,7,8) was increased by the insertion

process. After the execution of the algorithm,

the new array is (1,3,5,10,7,8) producing six (6)

elements against the original five(5).

iv. The Update algorithm

The update algorithm is executed such that

there is a replacement of an existing element in

the array. The result after updating produced

the array of (1,3,10,7,8) against the original

array of (1,3,5,7,8). Here, the element 10 in

inserted in the Kth position of the original array

to produce (1,3,10,7,8).

5.0 CONCLUSION

A common source of difficulty in computing is

the overload that occurs when the demand on

working memory exceeds its capacity. One

solution to this overload is to build strategies

that decrease a task's demand on working

memory. Arrays are extremely efficient in

accessing values because all the elements are

stored in contiguous spaces in memory. Array

supports Random Access, which means

elements can be accessed directly using their

index, like arr[0] for 1st element, arr[4] for 5th

element etc.

Hence, accessing elements in an array is fast

with a constant time complexity of O(1).

Algorithmic strategies are essential component

that automate individual steps in intelligence

analysis in an array of element, most especially

as regards data structures.

REFERENCES

Bier, E., Card S. & Bodnar J. (2010). Principles

and Tools for Collaborative Entity-

Based Intelligence Analysis. TVCG,

16(2):178–191.

Bier, E., Ishak E., & Chi E. (2006). Entity

Workspace: An Evidence File That Aids

Memory, Inference, and Reading. In ISI

’06, pages 466–472.

Buczak, A. L., & Gifford, C. M Fuzzy (2010).

Association Rule Mining for

Journal of Science, Engineering and Technology, Vol. 6 (1), March 2019

117

Community Crime Pattern Discovery. In

ACM ISI-KDD ’10, pages 2:1–2:10.

Kang, H., Plaisant, C., Lee, B., & Bederson, B.

B. NetLens (2007). Iterative Exploration

of Content-actor Network Data.

Info.Vis., 6(1):18–31.

Lindahl, E., O’Hara, S., & Zhu, Q., A. (2007).

Multi-agent System of Evidential

Reasoning for Intelligence Analyses. In

AAMAS’07, pages 279:1–279:6.

Pirolli, P., Card, S. (2005). The Sensemaking

Process and Leverage Points for Analyst

Technology as Identified through

Cognitive Task Analysis. In ICIA ’05.

Sfetcu, Nicolae. (2016). Cunoaștere și

Informații. Nicolae Sfetcu

Skillicorn, D., B. (2010) Applying

Interestingness Measures to Ansar

forum Texts. In ACM ISI-KDD ’10,

pages 7:1–7:9.

Security Degree Hub. (2019). Retrieved

August 28, 2019 from

https://www.securitydegreehub.com/wh

at-is-intelligence-analysis/

Study tonight (2019). Retrieved August 28,

2019 from

https://www.studytonight.com/data-

structures/space-complexity-of-

algorithms.

Study tonight (2019b). Retrieved August 28,

2019

https://www.studytonight.com/data

structures/time-complexity-of-

algorithms.

Jigsaw: (2012). Visual Analytics for Exploring

and Understanding Document

Collections,

http://www.cc.gatech.edu/gvu/ii/jigsaw

/

i2group. The Analyst’s Notebook. (2011).

http://www.i2group.com/us.

PNNL. Pacific Northwest National Laboratory,

INSPIRE Visual Document Analysis,

2011, http://in-spire.pnl.gov.

View publication statsView publication stats

http://www.cc.gatech.edu/gvu/ii/jigsaw/
http://www.cc.gatech.edu/gvu/ii/jigsaw/
http://www.i2group.com/us
http://in-spire.pnl.gov/
https://www.researchgate.net/publication/348448880

