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ABSTRACT 

Energy optimization remains an important consideration in the designs and implementations of wireless 

sensor networks. One of the often recommended techniques to low power designs in Wireless Sensor 

Networks is duty cycling between sleep and active states to optimize power consumption. However most 

suggested duty cycling techniques fail to appreciate energy consumptions during state transitions and the 

performance loss incurred due to overheads associated with state change.In this paper we present a new 

technique for modeling and accurately predicting the energy consumption during transition between 

various states of the radio frequency transceiver of a typical WSN node. Our Model enables predictions by 

some precise stochastic probabilities of the next state of the transceiver using the  Markov Chain. The 

proposed technique is used to calculate the transition energy of the transceiver between states and enable 

decisions on when to switch between states or remain in a particular state in continuous time. 

 

Keywords: Markov Chain, Low power WSN, Transceiver Transition Energy Consumption, Transition 

Matrices, Duty Cycling, Random Walk, Pascal Triangle. 

 

1. INTRODUCTION 

The development of wireless sensor networks  

(WSN)  technology in the last decade has enable  

the ubiquitous applications of sensors from 

everyday activities to remote and mission critical 

areas. Despite the many advantages and 

characteristics of WSN, one considerable drawback 

is that battery powered WSN often  requires 

frequent service intervals  due to the limited  

capacity of the energy storage  element. The 

maintenance  cost  to replace or recharge  the  

hundreds of  WSN nodes may exceed  the system 

cost in  a relatively short  period  of time (Wang 

W.S et al , 2011) . One of the consistent and 

pervasive concerns when designing WSN and WSN 

applications is how to manage power consumption 

to optimize the lifespan of such networks. Several 

energy optimization techniques in WSN centered 

on duty cycling are presented in literature and 

majority often fall in the categories of protocol 

design (Ahmad and Dutkiewicz, 2009) and 

dynamic power management policies(DPM)(Benini 

and Micheli, 1997). 

 

The basic idea of low duty cycle protocols is to 

reduce is to reduce the time a node is idle or spend 

overhearing an unnecessary activity by putting the 

node in sleep state. DPM encompasses a set of 

techniques that achieve energy-efficient 

computation by selectively turning off (or re-ducing 

the performance of) system components when they 

are idle (or partially unexploited)(Benini and 

Micheli, 1997). The existing DPM policies can be 

broadly classified into three categories; Timeout 

Policies, Predictive Policies and Stochastic Policies.  

 

The basic assumption of Timeout policies is that if 

the device remains idle for τ, then it should further 

stay idle for at least Tbe. In (Karlin, 1994) 

the timeout policy proposed guarantees it would not 

consume more than twice the energy of an ideal 

offline policy. The authors in (Douglis et al., 1995), 

applied adaptive time out policy where t is 

increased or decreased arithmetically or 
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geometrically on the ratio of performance delay and 

sleep time. The disadvantage of the timeout policies 

is that they waste energy while waiting for the 

timeout to expire. 

 

In Predictive policies , the length of the upcoming 

idle period is pedicted. Thus one can make a 

decision immediately on whether to sleep or not 

depending upon the prediction being greater or less 

than Tbe. (Hwang and Wu, 1997) proposes a policy 

where the upcoming idle period length is calculated 

by taking an exponential average of the predicted 

and actual lengths of the previous idle period. Some 

other predictive policies use an adaptive learning 

tree to make predictions (Chung et al., 1999). 

 

In Stochastic policies models, minimizing power 

consumption and performance delays becomes 

stochastic optimization problems. Authors 

(Paleologo et al., 1998)  and (Qiu and Pedram, 

1999) modeled DPM as a Markov decision 

processes where services and inter request arrival 

time is modeled as an exponential distribution. 

Both view request and service as memoryless 

distributions where future states are dependent only 

on the current states.  

 

In most practical instances, Power Managed 

Components (PMC) is modeled by a finite-state 

representation called power state machine (PSM) 

(Benini, 2000). (Odey and Li, 2012) proposes an 

energy consumption model, where energy 

consumption in WSN transceiver is modeled as a 

finite state machine of recognizable finite and 

transition states where states are the various modes 

of operation that span the tradeoff between 

performance and energy consumption.  

 

Transitions between finite states of operation have 

a cost. In many cases, the cost is in terms of delay 

or performance loss if transition is not 

instantaneous, and the component is not operational 

during a transition. In most duty cycling and energy 

optimization techniques in WSN, what happens 

within the transition states still remains 

unpredictable and can serve as the flaw in an 

efficient energy consumption policy.  For instance, 

if entering a low-power state requires power-supply 

shutdown, returning from this state to the active 

state requires a (possibly long) time for: 1) turning 

on and stabilizing the power supply and the clock; 

2) reinitializing the system; and 3) restoring the 

context (Benini, 2000). An effective energy 

optimization must seek to maximize power savings 

while keeping performance degradation within 

acceptable limits. In other words, we need to decide 

when it is worthwhile (performance and power-

wise) to transition to a low-power state and which 

state should be chosen (if multiple low-power states 

are available) (Benini, 2000). 

 

In this paper as in (Paleologo et al., 1998)  and (Qiu 

and Pedram, 1999), we propose an energy 

optimization model for the transition state of a 

transceiver in a WSN node as a Markovian process 

with stochastic abilities in finite increment of time. 

 

2. Theoretical Foundation: 

Definition  2.1.1  A  stochastic  process  is  a  

family  of  random variables {X(t), t> 0} where t is 

the time parameter. The values assumed  by  the  

process  are  called  the  states,  and  the  set  of 

possible values is called the state space. 

Definition 2.1.2 A (discrete-time) Markov chain 

with (finite or countable) state space X is a 

sequence X0,X1,... of X valued random variables 

such that for all states i, j, k0,k1, and all times n = 0, 

1, 2,..., 

 

P(Xn+1 = j││ Xn = i,  Xn-1 = Kn-1,...) = P(i, j )              

(1) 

 

where P(i, j ) depend only on the states i, j and not 

on the time n or the previous states Kn-1, n-2,... The 

numbers P(i, j) are called the transition probabilities 

of the chain. 

 

Proposition 2.1 If Xn is a Markov chain with 

transition probabilities P(x,y) then for every 

sequence of states X0, X1,… Xn+m, 

 P(Xm+i =xm+i   0< i ≤ n ǁ Xi =xi  0≤ i ≤ m) = 

∏i=1
n P(xm+i-1, xm+i).                                       (2) 
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Consequently, the n-step transition probabilities 

Pn(x,y ) := P(Xn+m = y ǁ Xm = x)                      (3) 

depends only on the time lag n and the initial and 

terminal states x,y , but not on m. 

 

Proof. The first statement can be proved by a 

completely routine induction argument, using the 

definition of a Markov chain and elementary 

properties of conditional probabilities. The second 

follows from the first, by summing over all possible 

sequences xm+i of intermediate states: the right side 

of equation (3) makes it clear that this sum does not 

depend on m, since the factors in the product 

depend only on the transitions xi , xi+1 made, and 

not on the times at which they are made. 

Definition 2.2.1 A state j is said to be 

accessible from state i if there is a positive-

probability path from i to j , that is, if there is a 

finite sequence of states k0,k1,...,km such that k0 = i, 

km = j , and P(kt , kt+1) > 0 for each t = 0, 1,...,m-1. 

States i and j are said to communicate if each is 

accessible from the other. This relation is denoted 

by i ↔ j. 

Fact 1. Communication is an equivalence relation. 

In particular, it is transitive: if i communicates with 

j and j communicates with k then i communicates 

with k . 

It follows that the state space X is uniquely 

partitioned into communicating classes (the 

equivalence classes of the relation ↔). If there is 

only one communicating class (that is, if every state 

is accessible from every other) then the Markov 

chain (or its transition probability matrix) is said to 

be irreducible. In general, if there is more than one 

communicating class, then states in one 

communicating class C1 may be accessible from 

states in another class C2; however, in such a case 

no state of C2 can be accessible from a state of C1. 

Definition 2.2.2  The period of a state i is the 

greatest common divisor of the set {n∈N: Pn(i,i) > 

0}. If every state has period 1 then the Markov 

chain (or its transition probability matrix) is called 

aperiodic. 

Note: If i is not accessible from itself, then the 

period is the g.c.d. of the empty set; by convention, 

we define the period in this case to be + ∞.  

Fact 2. If states i, j communicate, then they must 

have the same period. Consequently, if the Markov 

chain is irreducible, then all states have the same 

period.  There is a simple test to check whether an 

irreducible Markov chain is aperiodic: If there is a 

state i for which the 1-step transition probability 

P(i,i) > 0, then the chain is aperiodic. 

Fact 3.  If the Markov chain has a stationary 

probability distribution π for which π (i) > 0, and if 

states i, j communicate, then π (j) > 0. 

Definition 2.2.3  A state i is said to be 

recurrent if and only if, starting from i, eventual 

return to this state is certain. A recurrent state is 

said to be positive recurrent if and only if the 

mean time to return to this state is finite. A state i 

is said to be transient if and only if, starting from 

i, there is a positive probability that the process 

may not eventually return to this state. 

Definition 2.2.4 . If the set of all states of a 

stochastic process X form a single communicating 

class, then X is irreducible. 

Theorem 2.1  

(1) If the Markov process is irreducible, then 

the limiting distribution limt→∞Pi(t) = Pi, i∈S, 

exists and is independent of the initial conditions of 

the process, The limits {Pn|n∈ S) are such that they 

either vanish identically (i.e., Pi = 0 for all i∈S) or 

are all positive and form a probability distribution 

(i.e.,Pi > 0 for all i∈S,   ∑i∈S Pi = 1). 

(2)   The limiting distribution {Pi, i∈S} of an 

irreducible positive recurrent Markov process is 

given by the unique solution of the equation: PG = 

0 and ∑ i∈SPj = 1 where P = (p0, p1,…). 

Definition 2.3  The random walk on an 

undirected graph is a Markov chain where the states 

are represented as the vertices of the graph, and a 

transition consists of choosing an edge through the 

vertex on which the marker sits (all edges being 

equally likely) and moving to the other end of this 

edge. 

Theorem 2.2 : Let G be an undirected, connected, 

non-bipartite graph on n vertices. Then: 

(1) There is a unique stationary distribution π = 

(π(1), . . . , π(n)). Furthermore, all entries in π are 

non-zero. 
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(2) For all vertices i, j, we have limt→∞ Pti,j = π(j). 

Note that the limit is independent of i. In words, 

this means that no matter where we start the 

random walk (i.e., regardless of our starting point i) 

we end up in state j (for large enough t) with the 

same probability π(j). 

(3). Let hi,i denote the expected number of steps for 

a random walk beginning at vertex i to return to i. 

Then hi,i = 1/π(i).  

 

Let G = (X; E) be a connected graph with n nodes 

and m edges. Consider a random walk on G: we 

start at a node X0; if at the t-th step we are at a node 

Xt , we move neighbor of Xt with probability 

1/d(Xt). Clearly, the sequence of random nodes (Xt: 

t = 0;1; : : :) is a Markov chain. The node X0 may 

be fixed, but may itself be drawn from some initial 

distribution P0. We denote by Pt the distribution of 

Xt: 

 Pt(i) = Prob(vt = i): 

 

We denote by M = (Pij) i;j∈ V the matrix of 

transition probabilities of this Markov chain. So 

 

Pij =   

 

Let AG be the adjacency matrix of G and let D 

denote the diagonal matrix with (D)ii = 1/d(i), then 

M = DAG. If G is d-regular, then M = (1/d)AG. 

 

The rule of the walk can be expressed by the simple 

equation 

 

Pt+1 = MTPt, 

 

(the distribution of the t-th point is viewed as a 

vector in RV), and hence  

 

Pt = (MT)tP0 , 

 

It follows that the probability Ptij that, starting at i, 

we reach j in t steps is given by the ij-entry of the 

matrix Mt. 

 

If G is regular, then this Markov chain is symmetric: 

the probability of moving to u, given that we are at 

node v, is the same as the probability of moving to 

node v, given that we are at node u. For a non-

regular graph G, this property is replaced by time-

reversibility: a random walk considered backwards 

is also a random walk. More exactly, this means 

that if we look at all random walks (X0; : : : ; Xt), 

where X0 is from some initial distribution P0, then 

we get a probability distribution Pt on Xt. We also 

get a probability distribution Q on the sequences 

(X0; : : : ; Xt). If we reverse each sequence, we get 

another probability distribution Q0 on such 

sequences. Now time reversibility means that this 

distribution Q0 is the same as the distribution 

obtained by looking at random walks starting from 

the distribution Pt. The probability distributions P0; 

P1; : : : are of course different in general. We say 

that the distribution P0 is stationary (or steady-state) 

for the graph G if P1 = P0. In this case, of course, 

Pt= P0 for all t≥ 0; we call this walk the stationary 

walk. A one-line calculation shows that for every 

graph G, the distribution  

 

π(X)=  

 

is stationary. In particular, the uniform distribution 

on X is stationary if the graph is regular. 

 

3.    SYSTEM MODELING 

 

From (Odey and Li, 2012) we model the energy 

consumption of the transceiver as an aggregation of 

energy consumption of finite states and the energy 

expended in transition between this states as shown 

in figure 1. Figure 2 depicts the energy 

consumption of transceiver during transition 

between finite states. Our paper addresses the the 

energy optimization problem of the transition 

period t, representing one cycle of transition that 

captures both entry and exit of both Sleep and Idle 

states.This is the transition cycle that occur more 

frequently and are often the subject of most duty 

cyling and dynamic power optimization research 

where balance is sought between keeping the nodes 

in idle states or sleep states.  
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      Tdt= t3-t2 +t5-t4                                             (4) 

 

Also the energy consumed in Sleep State is 

given as   

 

Eslp = Et + ESleep                                   (5)                

                                                                          

where Esleep is energy consumed  in sleep state and 

Et is the transition energy. 

Let us consider a WSN transceiver node whose 

state transition delay time is Tdt (including 

shutdown and wake-up delays) when the transition 

energy Et is expended in a single transition cycle. 

Suppose the power consumed in the Idle and sleep 

states is Pidle and Ps respectively. The minimum 

length of time, the transceiver stays in idle state to 

save power is called the break-even time Tbe. It is 

also convenient to define the  break even time Tbe in 

the sleep state as the product of the transition delay 

time Tdt and the  minimum length of time Tms spent 

in the sleep state to save energy: Tbe = Tdt +Tms,  

The transceiver breakeven point is the case in time 

when the energy spent in Idle State equates or 

balances- out the energy spent in the sleep state 

(Eslp)  

 

PIdle x Tbe = Et + Ps (Tbe -Tdt)                    (6) 

 

or 

 

 Tbe = (Et – Ps x Tdt)/PIdle- Ps                                 (7) 

 

 
Figure 1:  Transceiver Energy Consumption model. 

 

 

 

 

 

Figure 2:  Transceiver Energy Consumption. 

 

Let us model our transceiver energy consumption 

as a Markov chain of 2X2 matrix of  Idle (I) and  

Sleep (S) states in discrete time represented as the 

vertices of a weighted graph with transition 

probabilities P(i,j) and an initial Probability 

distribution function u.  Let us consider the 

transition to the next states as a one dimensional 

random walk along the weighted edge of a graph; 

the Pascal triangle (Figure 3) starting from the 

vertex.  We shall imagine walking from the top 

vertex of the Pascal triangle down to the vertex 

below along the edges, i.e., at every vertex on our 

transition we are given a choice whether to proceed 

to the right (I) or to the left (S) vertices immediately 

below. A walk to the next vertex depends only on 

the current vertex and not on previous vertices. So 

that at every vertex we have two choices whether to 

step right or left  to a new vertex with probability 

proportional to the weight of the corresponding 

edge.  

 

As the walk is updated according to a 2×2 matrix of 

transition probabilities, the (I,S)th  entry of which 

gives the probability that the model moves from 

vertex I to vertex S at any time change (It doesn’t 

matter if the starting vertex is I or S, the powers of 

the transition matrix approach a matrix with 

constant columns as the power increases. The 
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number to which entries in the Ith column converge 

is the asymptotic fraction of time the transceiver 

spends in state I; represented by the invariant 

probability distribution of convergence. This 

invariant probability distribution of convergence is 

only possible if our random walk satisfies the 

conditions of irreducibility and aperiodicity stated 

in the theorems in section II. If the initial 

probability distribution of our transition energy 

model is 0.5, and the random walk through the 

edges of the Pascal triangle is modeled as a 

Bernoulli event with a binomial distribution, we 

still arrive at literary points of convergence. There 

exist some point in the transitions with equal 

median distribution both left and right, however the 

random walk will not achieve an invariant 

distribution. 

 

To achieve the desired state of our transceiver, we 

can model a random walk through a favoured state 

(S or I) by skewing the initial probability 

distribution in favour of any particular state (though 

we will still arrive at the same points of 

convergence). In the random walk through the 

Pascal triangle, knowing the convergence point 

enables transition energy optimization decisions to 

be taken as this equates the breakeven time in our 

transceiver energy consumption.  

 
Figure 3:  Pascal Triangle showing random walk 

paths. 

 
Figure 4:  State diagram of a 2x2 matrix 

 

Let us consider our models mathematically here 

as a 2x2 matrix represented in the state diagram 

below with a transition matrix P. 

 

P =  , with a  and b .  

             

P  1· I =  

 

det(P  1· I) =│ │ 

 

det(P 1· I) = (  1) · (  1)  (1 ) · (1 ) = 0   

 

P  λ· I =  

(  ) · (  )  (1 ) · (1 ) = 0 

                     

+ +  + ) = 0 

 

 = 2  

 

2  

 

Since  and , 0 <   < 1. 

Therefore 1 = 1 is the dominant eigenvalue. This 

fact will manifest itself when we demonstrate that 

the corresponding eigenvector is indeed the steady 

state vector Xss. 

Now let us find the corresponding eigenvector. 

  

P  1· I =  
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(  1) · X1 = (  1) · X2. 

 P · V = V 

 

 ·  =  

  

But the components of the vector V =   must 

add to 1. Otherwise, it cannot be a state vector. 

V1 =   =    

 

 If the steady state vector Xss is the eigenvector 

corresponding to λ = 1 and the steady-state vector 

can also be found by applying P to any initial state 

vector a sufficiently large number of times, 

m,  then  Pm must approach a specialized matrix. 

 

Let the   = Q for the matrix P =  where “N” is a very large positive integer. 

 

P · Xss = Xss 

Q· X0 = Xss 

  

X0  =  

·   =    

 

 (-q11- q22 - 1)·γ + (1-q22) =  

 

 (1 - q11- q22 - 1)·γ + (q22) =  

  

For both equations above to be true for all values of  , q11+ q22 = 1. Then we obtain these results. 

 q11 =           q22 =  

 

Q =     = (Xss·Xss) 

 

 From equation 7, the breakeven time Tbe for the Idle and Sleep state is given as  

 

Tbe = (Et –Ps x Tdt)/Pidle - Ps 

 

Scaling to achieve a scalar and Vector arithmetic, we arrive at  

 

Q = (Et –Ps x Tdt)/Pidle-Ps 

 

Therefore our Transceiver Transition Energy consumption Model is given as 
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Et = Q· (PIdle-Ps) +PsTdt 

 

For example  let us consider the  I  and S  to be the 

Idle and Sleep states of our transceiver respectively, 

and if we assume that 70% of the time, the 

transceiver is in the Idle state and while the 

transceiver stays in the sleep state (S) 20%  of the 

same time.  We can determine the probability of a 

new transition to either the sleep or idle state after 

20 transitions. Now after a period of iterative time 

transitions, the distribution of our sleep (S) state 

and Idle (I) states will be given as  

 

 P =  =  =  

 

P1= =         P2= =                   

 

 The matrix P=  is our transition matrix. 

Note that, the entries of each column vectors are 

positive and their sum is 1. 

 

Now that we have the transition matrix, we need a 

state vector X such that P.X = X, that is, an 

eigenvector of P associated to the eigenvalue 1. We 

need a particular state vector, namely the initial 

state vector. Our model considers a transceiver 

which is either in one of two states (Idle and Sleep 

State) but not both at the same time.  The last state 

vector reflects that. 

 

X0=  =                              

X1 = P·X0 

X2 = P·P·X0 = P2·X0  

Xk = Pk·X0 

X20 = P20·X0  = 20   =    

 

Therefore, after 20 transitions, we will find out that 

the transceiver spent only 40% of time in the Idle 

state. 

 What happens after 50 transitions? 

 

 X50 = P50·X0  = 50   =    

 

 We arrive at the same result. In other words, the 

state vector converged to a steady-state vector.  

In this case that steady-state vector is  

Xss = .  

 

Irrespective of the starting state, eventually 

equilibrium must be achieved. The transient or 

sorting-out phase takes a different number of 

iterations for different transition matrices, but 

eventually the state vector features components that 

are precisely what the transition matrix calls for. So, 

subsequent applications of P do not change the 

matured state vector. 

  

4 MODEL SIMULATION 

To model our transition energy model requires the 

convergence of a 2x2 matrix of  markov chain, the 

random walk in a pascal triangle and the use of 

skewness in our probability distribution function to 

to favour either the sleep or Idle States. To simulate 

the random walk through a Pascal triangle, the 

popular Plinko probability (Phet, 20013) , the 

Mathematica Wolfram demonstration suite for 

“The Skew Normal Density Function” (Coutinho, 

2013) and “the probability machine” (Wes64, 2013) 

were  used to demonstrate the various components 

of our model. 

 

We simulated a Pascal triangle of eleven rows with 

the initial distribution function of 0.5, 0.78 and 0.2 

using the plinko probaility tool . An average of 100 

balls is allowed to roll down the triangle from the 

top vertex to the base of the triangle. The balls 

randomly walks (transition) through each vertex 

either going left (Sleep State) or right (Idle state).  

And the probability distribution of the walks at the 

end of the eleventh row is shown below the triangle.  
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Figure 5:  100 trials-Random walk Path on Pascal 

triangle. 

 

 The probability machine captures this random 

walk of 100 balls choosing between the two states 

in each finite time increments with colourful walk 

paths (transition) as shown in Figure 5.  The results 

of the experiment shows a normal distribution 

curve as shown by the histogram under the Pascal 

triangle in Figure 6 when the probability of 

distribution is 0.5 and the Pascal triangle generated 

is shown in Table 1.  

 

 

 

 

 

Table 1: One dimensional walk through Pascal 

triangle. 

 

In Table 1 subsequent rows are found by 

adding half of each cell in a given row to each of 

the two cells diagonally below it. In fact, it is 

simply Pascal's triangle padded with intervening 

zeros and with each row multiplied by an additional 

factor of 0.5 [15]. 

 

 

 
Figure 6:  Pascal Triangle showing random walk 

paths for 0.5 initial distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Random walk of a 2x2 matrix 

Probability distribution with 0.47 skewness. 
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http://mathworld.wolfram.com/Half.html
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Applying a skewness of 0.469 and -0.945 to the 

initial distribution produced the probability 

distributions shown in Figure 7 and Figure 8 

respectively. This demonstrates how easily this 

energy model can be used to favour a transition to 

Sleep state or Idle state of the transceiver. Also in 

Figure 7 and Figure 8, there appears a 

convergence point at  point 4 on the graph 

irrespective of the whether the distribution is 

skewed or not. This demonstrate that our  random 

walk will have points of convergence if modeled as 

a binomial distribution or have convergence or  

invariant / stationary probability distribution when 

modeled a markov chain of 2X2 matrix 
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Figure 8:  Random walk of a 2x2 matrix 

Probability distribution with -0.95 skewness. 

 
 

5.  CONCLUSION 

This paper shed lights on how energy 

consumption can be maximized in the transceiver 

during state transitions. In this Paper we modeled 

the transition between the active and sleep states of 

the transceiver as a random walk of a 2X2 matrix 

elements on a weighted graph represented as the 

Pascal triangle. Irrespective of the starting state, we 

are able to arrive at a probability of consistent 

stationary distribution for the model. The 

usefulness of our model lies in the fact that a 

clearer picture of energy optimization in WSN 

deployment is presented, which enables transition 

energy optimization decisions to be taken  as  this 

model can skewed to favor a transceiver state of 

interest.  

Details of the binomial distribution of state 

transitions and also the various properties and 

number patterns of the Pascal triangle as it relates 

to the transition energy consumption of the 

transceiver will be investigated in future research.  
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